您的位置:中国金融观察网 > 财经 >

Transformer后继有模!MSRA提出全新大模型基础架构:推理速度

2023-07-19 12:38 来源:IT之家   

微软大模型新架构,正式向 Transformer 发起挑战!论文标题明晃晃地写道:

Retentive Network:大模型领域 Transformer 的继任者。

论文提出新的 Retention 机制来代替 Attention。来自微软亚研院和清华的研究人员,毫不讳言“野心”,大胆放话:

RetNet 实现了良好的扩展结果、并行训练、低成本部署和高效推理。

这些特性使这一基础架构,成为大语言模型中 Transformer 的有力继承者。

而实验数据也显示,在语言建模任务上:

  • RetNet 可以达到与 Transformer 相当的困惑度

  • 推理速度达 8.4 倍

  • 内存占用减少 70%

  • 具有良好的扩展性

并且当模型大小大于一定规模时,RetNet 表现会优于 Transformer。

Transformer 果真“后继有模”了?具体详情,一起来看。

解决“不可能三角”

Transformer 在大语言模型中的重要性毋庸置疑。无论是 OpenAI 的 GPT 系列,还是谷歌的 PaLM、Meta 的 LLaMA,都是基于 Transformer 打造。

但 Transformer 也并非完美无缺:其并行处理机制是以低效推理为代价的,每个步骤的复杂度为 O;Transformer 是内存密集型模型,序列越长,占用的内存越多。

在此之前,大家也不是没想过继续改进 Transformer。但主要的几种研究方向都有些顾此失彼:

  • 线性 attention 可以降低推理成本,但性能较差;

  • 循环神经网络则无法进行并行训练。

也就是说,这些神经网络架构面前摆着一个“不可能三角”,三个角代表的分别是:并行训练、低成本推理和良好的扩展性能。

RetNet 的研究人员想做的,就是化不可能为可能。

具体而言,RetNet 在 Transformer 的基础上,使用多尺度保持机制替代了标准的自注意力机制。

与标准自注意力机制相比,保持机制有几大特点:

  • 引入位置相关的指数衰减项取代 softmax,简化了计算,同时使前步的信息以衰减的形式保留下来。

  • 引入复数空间表达位置信息,取代绝对或相对位置编码,容易转换为递归形式。

另外,保持机制使用多尺度的衰减率,增加了模型的表达能力,并利用 GroupNorm 的缩放不变性来提高 retention 层的数值精度。

RetNet 的双重表示

每个 RetNet 块包含两个模块:多尺度保持模块和前馈网络(FFN)模块。

保持机制支持以三种形式表示序列:

  • 并行

  • 递归

  • 分块递归,即并行表示和递归表示的混合形式,将输入序列划分为块,在块内按照并行表示进行计算,在块间遵循递归表示。

其中,并行表示使 RetNet 可以像 Transformer 一样高效地利用 GPU 进行并行训练。

递归表示实现了 O 的推理复杂度,降低了内存占用和延迟。

分块递归则可以更高效地处理长序列。

这样一来,RetNet 就使得“不可能三角”成为可能。以下为 RetNet 与其他基础架构的对比结果:

在语言建模任务上的实验结果,进一步证明了 RetNet 的有效性。

结果显示,RetNet 可以达到与 Transformer 相似的困惑度。

同时,在模型参数为 70 亿、输入序列长度为 8k 的情况下,RetNet 的推理速度能达到 Transformer 的 8.4 倍,内存占用减少 70%。

在训练过程中,RetNet 在内存节省和加速效果方面,也比标准 Transformer+FlashAttention 表现更好,分别达到 25-50% 和 7 倍。

值得一提的是,RetNet 的推理成本与序列长度无关,推理延迟对批量大小不敏感,允许高吞吐量。

另外,当模型参数规模大于 20 亿时,RetNet 的表现会优于 Transformer。

研究团队

RetNet 的研究团队,来自微软亚研院和清华大学。共同一作为孙宇涛和董力。

孙宇涛,清华大学计算机系本科,现在在微软亚研院实习。

董力,微软亚研院研究员。他也是此前引发大量关注的“能记住 10 亿 token 的 Transformer”的论文作者之一。

RetNet 论文的通讯作者是韦福如。他是微软亚洲研究院全球研究合伙人,10 亿 token Transformer 亦是来自他的研究团队。

论文地址:

广告声明:文内含有的对外跳转链接,用于传递更多信息,节省甄选时间,结果仅供参考,IT之家所有文章均包含本声明。

郑重声明:此文内容为本网站转载企业宣传资讯,目的在于传播更多信息,与本站立场无关。仅供读者参考,并请自行核实相关内容。

栏目导读
你与“诗和远方”之间,只差一个TA

你与“诗和远方”之间,只差一个TA

第一次看到Poppy的时候,相信很多人会说这个姑娘真的很精致优雅。没错,小红书里的Poppy笑起来很甜,举手投足都很自信很淡定。但很难想象P...

2023-10-13 15:34
交通银行助力世界数字经济大会打造更鲜活的数字应用场景

交通银行助力世界数字经济大会打造更鲜活的数字

2023世界数字经济大会暨第十三届智慧城市与智能经济博览会于10月13日至15日在宁波举行,交通银行连续三年作为支持单位参与大会。作为唯一参...

2023-10-13 12:57
进军超深层,钻出“地下珠峰”

进军超深层,钻出“地下珠峰”

塔里木油田钻井现场塔里木油田公司供图位于沙漠腹地的塔中第三联合站塔里木油田公司供图在塔里木这个我国陆上最大的含油气盆地,分布着全国80%以上...

2022-08-18 11:43
四款人民视频融媒新品在2022智能视听大会上线

四款人民视频融媒新品在2022智能视听大会上

8月16日至18日,以“虚实共生数字新未来”为主题的2022(GIAC)智能视听大会在山东省青岛市举办。在开幕式上,人民视频联合行业头部生态...

2022-08-18 11:42
焦点
头条关注
最新新闻